Tuning EASY-Backfilling Queues

نویسندگان

  • Jérôme Lelong
  • Valentin Reis
  • Denis Trystram
چکیده

EASY-Backfilling is a popular scheduling heuristic for allocating jobs in large scale High Performance Computing platforms. While its aggressive reservation mechanism is fast and prevents job starvation, it does not try to optimize any scheduling objective per se. We consider in this work the problem of tuning EASY using queue reordering policies. More precisely, we propose to tune the reordering using a simulationbased methodology. For a given system, we choose the policy in order to minimize the average waiting time. This methodology departs from the First-Come, First-Serve rule and introduces a risk on the maximum values of the waiting time, which we control using a queue thresholding mechanism. This new approach is evaluated through a comprehensive experimental campaign on five production logs. In particular, we show that the behavior of the systems under study is stable enough to learn a heuristic that generalizes in a train/test fashion. Indeed, the average waiting time can be reduced consistently (between 11% to 42% for the logs used) compared to EASY, with almost no increase in maximum waiting times. This work departs from previous learning-based approaches and shows that scheduling heuristics for HPC can be learned directly in a policy space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Adapting Backfilling Scheduling for Parallel Systems

We focus on non-FCFS job scheduling policies for parallel systems that allow jobs to backfill, i.e., to move ahead in the queue, given that they do not delay certain previously submitted jobs. Consistent with commercial schedulers that maintain multiple queues where jobs are assigned according to the user-estimated duration, we propose a self-adapting backfilling policy that maintains multiple ...

متن کامل

Two-tier project and job scheduling for SaaS cloud service providers

This study addresses a two-tier job scheduling problem for SaaS cloud service providers which rely on resources leased from IaaS cloud providers to achieve elasticity to computational power. In our model, a project represents a user request which consists of multiple jobs; the SaaS is obligated to complete projects using multiple resources leased from IaaS or PaaS providers. The goals are to re...

متن کامل

Power-aware Resource Allocation via Online Simulation with Multiple-queue Backfilling

Although traditional scheduling policies for high-end parallel systems focus on minimizing average job wait time while maximizing system utilization, actual supercomputer workload traces confirm the existence of significant periods of time of low utilization. Previous work has shown that, in the context of backfilling schedulers, portions of such high-end systems can be selectively powered down...

متن کامل

Backfilling Using Runtime Predictions Rather Than User Estimates

The most commonly used scheduling algorithm for parallel supercomputers is FCFS with backfilling, as originally introduced in the EASY scheduler. Backfilling means that short jobs are allowed to run ahead of their time provided they do not delay previously queued jobs (or at least the first queued job). To make such determinations possible, users are required to provide estimates of how long jo...

متن کامل

Selective Reservation Strategies for Backfill Job Scheduling

Although there is wide agreement that backfilling produces significant benefits in scheduling of parallel jobs, there is no clear consensus on which backfilling strategy is preferable should conservative backfilling be used or the more aggressive EASY backfilling scheme. Using tracebased simulation, we show that if performance is viewed within various job categories based on their width (proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017